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Abstract The mathematical model of Abdekhodaie and

Wu (J Membr Sci 335:21–31, 2009) of glucose-responsive

composite membranes for closed-loop insulin delivery is

discussed. The glucose composite membrane contains

nanoparticles of an anionic polymer, glucose oxidase and

catalase embedded in a hydrophobic polymer. The model

involves the system of nonlinear steady-state reaction–dif-

fusion equations. Analytical expressions for the concentra-

tion of glucose, oxygen and gluconic acid are derived from

these equations using the Adomian decomposition method.

A comparison of the analytical approximation and numerical

simulation is also presented. An agreement between analyt-

ical expressions and numerical results is observed.

Keywords Glucose-sensitive membrane � Insulin

delivery � Enzymatic reaction � Reaction–diffusion

equation � Adomian decomposition method

Introduction

Many people in the world suffer from diabetes. Diabetes is

a chronic disorder of glucose metabolism and one of the

major causes of heart and renal illnesses. Insulin-dependent

diabetes requires treatment with insulin delivered by

injection several times a day or by a pump to control

glucose levels. Therefore, various kinds of insulin-deliv-

ering systems containing a glucose membrane have been

studied (Abdekhodaie and Wu 2009). Some of these sys-

tems consist of immobilized glucose oxidase and catalase

in pH-responsive polymeric hydrogels (Abdekhodaie and

Wu 2005; Albin et al. 1990; Traitel et al. 2000; Podual

et al. 2000; Hassan et al. 1997; Zhang and Wu 2002; Zhang

et al. 2004; Wu et al. 2003a, b). The pH-sensitive hydrogels

can be divided into cationic and anionic types. Cationic

hydrogels, consisting of amino groups, swell in response to

pH decreases at high glucose levels. Anionic hydrogels

shrink due to the protonization of acidic groups. In this way

the permeability of the hydrogel to the insulin can be

varied, enabling dosage control. However, the weak

mechanical properties of homogeneous hydrogels consti-

tute a drawback (Wu et al. 2003a, b; Bae and Kim 1993).

To overcome this problem, composites of hydrophilic and

hydrophobic polymers have been developed (Abdekhodaie

and Wu 2009; Wu et al. 2003a, b; Bae and Kim 1993;

Cifková et al. 1990; Schwendeman et al. 1992; Zhang and

Wu 2004; Yam et al. 2000).

There have been only a few theoretical modeling studies

of cationic glucose-sensitive membranes (Abdekhodaie and

Wu 2005, 2009). Abdekhodaie and Wu (2009) have

developed a mathematical model to describe a dynamic

process of diffusion of reactants, coupled with an enzy-

matic reaction inside a glucose composite membrane

containing anionic nanoparticles, glucose oxidase and

catalase embedded in a hydrophobic polymer. To our

knowledge, no analytical solutions of this model have been

reported. However, in general, analytical solutions of

nonlinear differential equations are more interesting and
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useful than purely numerical solutions as they are amena-

ble to various kinds of manipulation and data analysis. For

this reason, the purpose of the present study is to derive

simple approximate analytical expression for the steady-

state concentrations of reactants in a membrane for closed-

loop insulin delivery using the Adomian decomposition

method (Adomian 1984, 1995; Siddiqui et al. 2010;

Wazwaz and Gorguis 2004; Sweilam and Khader

2010; Adomian and Witten 1994; Lesnic 2007; Magyari

2008; Rida 2010; Wazwaz 2000). This method has already

been used to solve effectively, easily and accurately a large

class of linear and nonlinear ordinary (deterministic or

stochastic) differential equations, with approximations that

converge rapidly. Hariharan and Kannan (2010) solved the

one-dimensional reaction–diffusion problem using the

Adomian decomposition method. As far as we are aware,

the present study is the first application of the Adomian

decomposition method to solve the system of nonlinear

second-order reaction–diffusion equations pertinent to

membrane science.

The Mathematical Model

Building upon earlier study, Abdekhodaie and Wu (2009)

presented a concise discussion and derivation of the

dimensionless mass transport nonlinear equations in the

glucose composite membrane, which is summarized briefly

below. For the glucose membrane consisting of a pH-sen-

sitive hydrogel and immobilized enzymes (glucose oxidase

and catalase), the reaction of the glucose oxidation cata-

lyzed by the glucose oxidase is

Glucoseþ O2 �!Glucose oxidase
Gluconic acidþ H2O2 ð1Þ

The catalase catalyzes the conversion of hydrogen

peroxide to oxygen and water:

H2O2 �!
Catalase

H2Oþ 1

2
O2 ð2Þ

When the catalase is in excess, all hydrogen peroxide is

reduced. Thus, the overall reaction becomes

Glucoseþ 1

2
O2 �!Glucoseoxidase;catalase

Gluconic acidþ H2O

ð3Þ

The corresponding governing equations for non-steady-

state conditions in Cartesian coordinates for the planar

diffusion and reaction in a membrane for closed-loop

insulin delivery are (Abdekhodaie and Wu 2009)

oCi

ot
¼ o

ox
Di

oCi

ox

� �
þ tiR ¼ 0 ð4Þ

where, i = g for glucose, i = OX for oxygen and i = a

for gluconic acid. The stoichiometric coefficients ti are

tg ¼ �1; tOX ¼ �0:5 and ta ¼ 1. The reaction rate R is

R ¼ vMax Cg COX

COXðKg þ CgÞ þ CgKOX
ð5Þ

For the steady-state condition, Eq. 4 becomes

Dg
d2Cg

dx2
� vMax Cg COX

COXðKg þ CgÞ þ CgKOX
¼ 0 ð6Þ

DOX
d2COX

dx2
� vMax Cg COX

2½COXðKg þ CgÞ þ CgKOX�
¼ 0 ð7Þ

Da
d2Ca

dx2
þ vMax Cg COX

COXðKg þ CgÞ þ CgKOX
¼ 0 ð8Þ

where Dg, DOX and Da are the diffusion coefficients of

glucose, oxygen and gluconic acid, respectively; Cg, COX

and Ca are the concentrations of glucose, oxygen and

gluconic acid, respectively; x is the spatial coordinate; and

vmax is the maximum reaction rate that is proportional to

the concentration of enzyme (Cenzis glucose oxidase) in the

membrane. Kg and KOX are the Michaelis-Menten constants

for glucose and glucose oxidase, respectively. The

boundary conditions are

dCOX

dx
¼ 0;

dCg

dx
¼ 0;

dCa

dx
¼ 0 at x ¼ 0 ð9Þ

COX ¼ C�OX; Cg ¼ C�g ; Ca ¼ 0 at x ¼ l ð10Þ

where COX* and Cg* are the concentrations of oxygen and

glucose in the external solution, x = 0 corresponds to the

membrane center and l is the half-thickness of the membrane.

We introduce the following set of dimensionless variables:

u ¼ Cg

C�g
; v ¼ COX

C�OX

; w ¼ Ca

C�OX

; X ¼ x

l
; cE1 ¼

l2vMax

DgC�g
;

cS1 ¼
l2vMax

DOXC�OX

; cE ¼
l2vMax

DaC�OX

; a ¼
C�g
Kg

; b ¼ C�OX

KOX

ð11Þ

Using these variables, Eqs. 6–8 can be cast into the

following dimensionless form:

d2u

dX2
� cE1uv uvþ v

a
þ u

b

� ��1

¼ 0 ð12Þ

d2v

dX2
� cS1uv

2
uvþ v

a
þ u

b

� ��1

¼ 0 ð13Þ

d2w

dX2
þ cEuv uvþ v

a
þ u

b

� ��1

¼ 0 ð14Þ

Here, u, v and w are the dimensionless concentrations

of glucose, oxygen and gluconic acid, respectively, and
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Table 1 Numerical values of the parameters used in this study

Parameter Unit Numerical value of

parameter used in

Abdekhodaie and Wu (2009)

Numerical value of parameter used in this study

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

a ¼ C�g=Kg – 8.9 and 35 0.1 0.5 0.5 0.1 0.5 0.5

b ¼ C�OX=KOX – 0.39 0.01 0.01 0.1 1–0.001 0.1–5 0.01–5

X (dimensionless distance) – 0–1 0–1 0–1 0–1 0–1 0–1 0–1

l (membrane thickness) cm 0–0.025 0.3 9

10-2–0.3

0.3 9

10-2–0.3

0.3 9

10-2–0.3

0.3 9

10-2–0.3

0.3 9

10-2–0.3

0.3 9

10-2–0.3

cE1 ¼ l2vMax

DgC�g
– 0 to 0.42 9 102 1–100 – 0.01 10 0.001 0.01

cs1 ¼ l2vMax

DOX C�
OX

; – 0 to 21.8 9 102 0.01 1–100 0.005 0.05 10 0.05

cE ¼ l2vMax

DaC�
OX

; – 0 to 8.12 9 102 – 0.001 0.1–20 – – –

The fixed values of the dimensional parameters are C�OX ¼ 0:274� 10�6; C�g ¼ 5:5� 10�6and 22 � 10�6; Dg ¼ 6:75� 10�6, DOX ¼ 2:29� 10�5;

KOX ¼ 6:992� 10�5; Kg ¼ 6:187� 10�7; tMax ¼ 2:5� 10�6; and 25:8� 10�6. These are dimensional parameters used in Abdekhodaie and Wu (2009)

Table 2 Comparison of normalized analytical steady-state concentration of glucose u with numerical results for various values of X and for

some fixed values of parameters a ¼ 0:1; b ¼ 0:01 and cS1 ¼ 0:01

X Concentration of glucose u

u (when cE1 = 1) u (when cE1 = 10) u (when cE1 = 50) u (when cE1 = 100)

This

study

Eq. 17

Numerical % of

deviation

This

study

Eq. 17

Numerical % of

deviation

This

study

Eq. 17

Numerical % of

deviation

This

study

Eq. 17

Numerical % of

deviation

0 0.9954 0.9955 0.01 0.9551 0.9551 0.00 0.7785 0.7793 0.10 0.5647 0.5718 1.26

0.2 0.9956 0.9957 0.01 0.9569 0.9569 0.00 0.7874 0.7883 0.11 0.5850 0.589 0.68

0.4 0.9962 0.9962 0.00 0.9622 0.9624 0.02 0.8139 0.8152 0.16 0.6359 0.6409 0.78

0.6 0.9971 0.9972 0.01 0.9712 0.9716 0.04 0.8581 0.8601 0.23 0.7207 0.7061 2.03

0.8 0.9983 0.9972 0.11 0.9838 0.9844 0.06 0.9201 0.9232 0.34 0.8426 0.8502 0.90

1 1.0000 0.9984 0.16 1.0000 1.0000 0.00 1.0000 1.0000 0.00 1.0000 1.0000 0.00

Table 3 Comparison of normalized analytical steady-state concentration of oxygen v with numerical results for various values of X and for some

fixed values of a ¼ 0:5; b ¼ 0:01 and cE1 ¼ 0:001

X Concentration of oxygen v

v (when cS1 = 1) v (when cS1 = 10) v (when cS1 = 50) v (when cS1 = 100)

This

sudy

Eq. 18

Numerical % of

deviation

This

study

Eq. 18

Numerical % of

deviation

This

study

Eq. 18

Numerical % of

deviation

This

study

Eq. 18

Numerical % of

deviation

0 0.9976 0.9978 0.02 0.9762 0.9779 0.17 0.8906 0.8963 0.64 0.8049 0.8079 0.37

0.2 0.9977 0.9978 0.01 0.9772 0.9788 0.16 0.8949 0.9004 0.61 0.8125 0.8155 0.37

0.4 0.9980 0.9981 0.01 0.9801 0.9815 0.14 0.9081 0.913 0.54 0.8355 0.8384 0.34

0.6 0.9985 0.9986 0.01 0.9849 0.9860 0.11 0.9302 0.934 0.40 0.8744 0.877 0.30

0.8 0.9992 0.9992 0.00 0.9917 0.9923 0.06 0.9615 0.9636 0.22 0.9302 0.9319 0.18

1 1.0000 0.9899 1.01 1.0000 1.0000 0.00 1.0000 1.0000 0.00 1.0000 1.0000 0.00
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cE1 ; cS1 and cE are the corresponding Thiele modulus

values. a and b are the dimensionless rate constants. The

corresponding boundary conditions (9 and 10) become

du

dX
¼ 0;

dv

dX
¼ 0;

dw

dX
¼ 0 when X ¼ 0 ð15Þ

u ¼ 1; v ¼ 1; w ¼ 0 when X ¼ 1 ð16Þ

Analytical Determination of the Concentrations

of Glucose, Oxygen and Gluconic Acid under

Steady-State Condition

In order to solve the boundary value problem, Eq. 12–16,

we used the Adomian decomposition method (Adomian

1984, 1995; Siddiqui et al. 2010; Wazwaz and Gorguis

2004; Sweilam and Khader 2010; Adomian and Witten

1994; Lesnic 2007; Magyari 2008; Rida 2010; Wazwaz

2000; Danish et al. 2011). The basic principle of this

method is described in Appendix A. Detailed derivations of

the dimensionless concentrations u, v and w of glucose,

oxygen and gluconic acid are described in Appendix B. As

a result, we have obtained

uðXÞ ¼ 1� cE1abx
2

þ 5a2b2cE1x
3 2cE1bþ 5cS1a½ �

48

þ cE1abx
2

� a2b2cE1x
3 2cE1bþ cS1a½ �

8

� �
X2

þ a2b2cE1x
3

48
2cE1bþ cS1a½ �

� �
X4 ð17Þ

vðXÞ ¼ 1� cS1abx
4
þ 5a2b2cS1x

3

96
2cE1bþ 5cS1a½ �

� �

þ cS1ab x
4

� a2b2cS1x
3

16
2cE1bþ cS1a½ �

� �
X2

þ a2b2cS1x3

96
2cE1bþ cS1a½ �

� �
X4 ð18Þ

wðXÞ ¼ cEabx
2
� 5a2b2cE1x

3

48
2cE1bþ 5cS1a½ �

� �

� cEabx
2
� a2b2cEx3

8
2cE1bþ cS1a½ �

� �
X2

� a2b2cEx3

48
2cE1bþ cS1a½ �

� �
X4

ð19Þ

where

x ¼ ½aþ bþ ab��1 ð20Þ

This is the approximation involving three terms of the

expansion (Eq. A5) only. The accuracy of expressions 17–19

can be improved by taking into account higher-order terms.

Numerical Simulation

The differential Eqs. 12–14 with boundary conditions 15

and 16 have also been solved numerically using SCILAB/

MATLAB software (www.scilab-enterprises.com). A

respective script pdex4 is provided in Appendix D. The

default parameters employed in Abdekhodaie and Wu

(2009) and in this study are given in Table 1. The

numerical solution is compared with our analytical results

in Tables 2, 3, 4 and Figs. 1, 2, 3. The comparison reveals

that the relative difference between the analytical dimen-

sionless concentrations u, v and w of glucose, oxygen and

gluconic acid and numerical reference results does not

exceed 3 % for all values of the parameters considered in

the simulations.

Results and Discussion

Equations 17–19 represent the analytical expressions for

the dimensionless concentrations of glucose u(X), oxygen

Table 4 Comparison of normalized analytical steady-state concentration of gluconic acid w with numerical results for various values X and

some fixed values of a ¼ 0:5; b ¼ 0:1; cE1 ¼ 0:01 and cS1 ¼ 0:005

X Concentration of gluconic acid w

w (when cE = 1) w (when cE = 5) w (when cE = 10) w (when cE = 20)

This

study

Eq. 19

Numerical % of

deviation

This

study

Eq. 19

Numerical % of

deviation

This

study

Eq. 19

Numerical % of

deviation

This

study

Eq. 19

Numerical % of

deviation

0 0.0384 0.03846 0.16 0.1922 0.1923 0.05 0.3845 0.3846 0.02 0.7691 0.7691 0.00

0.2 0.0369 0.03689 0.03 0.1845 0.1844 0.05 0.3691 0.3689 0.05 0.7383 0.7378 0.07

0.4 0.0323 0.03218 0.37 0.1615 0.1609 0.37 0.3230 0.3218 0.37 0.6460 0.6436 0.37

0.6 0.0246 0.02433 1.10 0.1230 0.1217 1.05 0.2461 0.2433 1.14 0.4922 0.4866 1.14

0.8 0.0138 0.01335 2.90 0.0692 0.0667 3.57 0.1384 0.1335 3.54 0.2768 0.2669 3.58

1 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00
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v(X) and gluconic acid w(X) valid for all values of

parameters cE1, cS1, cE, a and b considered in this study

(see Table 1). The Thiele modulus cE1, cS1 or cE can be

varied by changing either the thickness of the membrane or

the concentration of oxygen and glucose in the external

solution. This parameter describes the relative importance

of diffusion and reaction in the enzyme layer. When it is

small, the kinetics are the dominant resistance; the overall

uptake of glucose, oxygen and gluconic acid in the enzyme

matrix is kinetically controlled. Under these conditions, the

glucose concentration profile across the membrane is

essentially uniform. The overall kinetics are determined by

the maximal reaction rate. In contrast, when the Thiele

modulus is large, diffusion limitations are the principal

determining factor. Adding Eqs. 12–14 and integrating

twice, we also obtain the following simple relation between

concentrations of glucose, oxygen and gluconic acid.

u

cE1

þ 2v

cs1

þ 2w

cE

¼ 1

cE1

þ 2

cS1

ð21Þ

Figure 1 presents the dimensionless concentration of

glucose uðXÞ for a ¼ 0:1; b ¼ 0:01 and cS1 ¼ 0:01 and

various values of cE1. From this figure, it is evident that the

concentration of glucose increases when cE1 or the

thickness of the membrane decreases. Also, the value of

u(X) is largest at X = 1. The value of the dimensionless

Fig. 1 Dimensionless concentration of glucose versus dimensionless

distance X, calculated for a ¼ 0:1; b ¼ 0:01 and cS1 ¼ 0:01. Solid
lines represent the analytical solution presented in this study (Eq. 17)

and dotted lines, the numerical solution

Fig. 2 Dimensionless concentration of oxygen versus dimensionless

distance X calculated for a ¼ 0:5; b ¼ 0:01 and ce1 ¼ 0:001. Solid
lines represent the analytical solution presented in this study (Eq. 18)

and dotted lines, the numerical solution

Fig. 3 Dimensionless concentration of gluconic acid versus dimen-

sionless distance X calculated for a ¼ 0:5; b ¼ 0:1; cE1 ¼
0:01 and cS1 ¼ 0:005. Solid lines represent the analytical solution

presented in this study (Eq. 19) and dotted lines, the numerical

solution

Fig. 4 Typical normalized steady-state concentration of glucose

u calculated from Eq. 17 for different values of the parameter b
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concentration of oxygen v(X)versus the dimensionless

distance is plotted in Fig. 2. From this figure, it is

inferred that the concentration of oxygen increases when

cS1 decreases. Furthermore, the concentration of oxygen

reaches the steady-state value when cS1 B 10. Figure 3

presents the concentration of gluconic acid w(X) as a

function of X for various values of parameters. From this

figure, it is obvious that the concentration of gluconic acid

w(X) increases when cE increases. It also decreases with

increasing X, approaching zero at X = 1.

The normalized steady-state concentration of glucose

against dimensionless distance is plotted in Fig. 4. From

this figure, we conclude that the value of u(X) increases

when the reaction–diffusion parameter b or the Michaelis-

Menten constant for glucose decreases. Figure 5 illustrates

the concentration of oxygen as a function of dimensionless

distance X for various values of b. In this figure, the value

of v(X) is equal to 1 when X = 1 for all values of the

reaction–diffusion parameter b. In Fig. 6, the concentration

of gluconic acid increases when b increases.

Conclusions

We analyzed the theoretical model describing the process

of reaction and diffusion in glucose-responsive composite

membranes, previously described by Abdekhodaie and Wu

(2009). The system of nonlinear, steady-state reaction–

diffusion equations of the model has been solved analyti-

cally. The accuracy of the approximate analytical solutions

has been verified by comparison with numerical solutions.

The analytical results can be employed to analyze the

effects of membrane formulation such as enzyme loading,

the type of buffer in the external solution and optimization

of the design of glucose-sensitive membranes.
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Appendix A: Basic Concepts of the Adomian

Decomposition Method

The Adomian decomposition method (Adomian 1984,

1995; Siddiqui et al. 2010; Wazwaz and Gorguis 2004;

Sweilam and Khader 2010; Adomian and Witten 1994;

Lesnic 2007; Magyari 2008; Rida 2010; Wazwaz 2000;

Danish et al. 2011) consists of decomposing the nonlinear

differential equation

F x; y xð Þ½ � ¼ 0 ðA1Þ

into two components

L y xð Þ½ � þ N y xð Þ½ � ¼ 0 ðA2Þ

where L and N are the linear and the nonlinear parts of F,

respectively. The operator L is assumed to be an invertible

operator. Solving for L(y) leads to

L yð Þ ¼ �N yð Þ ðA3Þ

Applying the inverse operator L to both sides of Eq. A3

yields

y ¼ � L�1ðNðyÞÞ þ /ðxÞ; ðA4Þ

where /ðxÞ is the function that satisfies the condition L(/)

= 0. Now suppose that the solution y can be represented as

an infinite series of the form

Fig. 5 Typical normalized steady-state concentration of oxygen

v calculated from Eq. 18 for different values of the parameter b

Fig. 6 Typical normalized steady-state concentration of gluconic

acid w calculated from Eq. 19 for different values of the parameter b
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y ¼
X1
n¼0

yn ðA5Þ

The Adomian decomposition method assumes that the

nonlinear term N(y) can be written as an infinite series in

terms of the Adomian polynomials An:

NðyÞ ¼
X1
n¼0

An ðA6Þ

where the Adomian polynomials An of N(y) are evaluated

using the formula

AnðxÞ ¼
1

n!

dn

dkn N
X1
n¼0

ðknynÞ
 !�����

k¼0

ðA7Þ

where k 2 ½0; 1�is a hypothetical parameter (28).

Substituting Eqs. A5 and A6 in A4 gives

X1
n¼0

yn ¼ /ðxÞ � L�1
X1
n¼0

An

 !
ðA8Þ

By equating the terms in the linear system of Eq. A8 one

obtains the recurrence formula:

y0 ¼ /ðxÞ; ynþ1 ¼ �L�1ðAnÞ n� 0 ðA9Þ

However, in practice all terms of the series (A6) cannot be

determined, and the solution is approximated by the trun-

cated series
PN
n¼0

yn.

Appendix B: Analytical Solutions

for the Concentrations of Glucose, Oxygen

and Gluconic Acid

The solution of Eqs. 12–14 allows us to predict the con-

centration profiles of glucose, oxygen and gluconic acid.

We write Eqs. 12–14 in the operator form and derive its

general solution using the Adomian decomposition method

(16–25). The operator form is

L
uðXÞ
vðXÞ
wðXÞ

2
4

3
5 ¼ N

uðXÞ
vðXÞ
wðXÞ

2
4

3
5

¼
cE1

cS1=2

�cEÞ

2
4

3
5 uðXÞvðXÞ

uðXÞvðXÞ þ vðXÞ=aþ uðXÞ=b

ðB1Þ

where L ¼ d2

dX2. Applying the inverse operator L-1 to both

sides of Eq. B1 yields, in agreement with Eqs. A4, A6 and

A8

where Pu; Pv; Pw; Qu; Qv and Qw are the integration

constant and the Adomain polynomial coefficients

An;iðXÞ ði ¼ u; v;wÞ can be obtained using Eq. A7. By

equating the terms of Eq. B2 and using the boundary

conditions 15 and 16, we get

u0ðXÞ
v0ðXÞ
w0ðXÞ

2
4

3
5 ¼¼

Pu

Pv

Pw

2
4

3
5X þ

Qu

Qv

Qw

2
4

3
5 ¼

1

1

0

2
4
3
5 ðB3Þ

The first two Adomain polynomial coefficients An;iðXÞ
ði ¼ u; v;wÞ are

A0;u

A0;v

A0;w

2
64

3
75 ¼

cE1

cS1=2

�cE

2
64

3
75 ab

abþ aþ b ðB4Þ

A1;u

A1;v

A1;w

2
4

3
5 ¼

cE1

cS1=2

�cE

2
4

3
5 ab bu1ðXÞ þ av1ðXÞ½ �

ðabþ aþ bÞ2
ðB5Þ

From the above equations we obtain u1ðXÞ; v1ðXÞ;
w1ðXÞ and u2ðXÞ; v2ðXÞ; w3ðXÞ as follows:

u1ðXÞ
v1ðXÞ
w1ðXÞ

2
64

3
75 ¼ L�1

A0;u

A0;v

A0;w

2
64

3
75 ¼

cE1

cS1=2

�cE

2
64

3
75 abð�1þ X2Þ

2ðaþ bþ abÞ ðB6Þ

and

uðXÞ
vðXÞ
wðXÞ

2
64

3
75 ¼X

n¼1

n¼0

unðXÞ
vnðXÞ
wnðXÞ

2
64

3
75 ¼

Pu

Pv

Pw

2
64

3
75X þ

Qu

Qv

Qw

2
64

3
75þ L�1

cE1

cS1=2

�cE

2
64

3
75 uðXÞvðXÞ

uðXÞvðXÞ þ vðXÞ=aþ uðXÞ=b

¼
Pu

Pv

Pw

2
64

3
75X þ

Qu

Qv

Qw

2
64

3
75þ L�1

Xn¼1
n¼0

An;u

An;v

An;w

2
64

3
75

ðB2Þ
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u2ðXÞ
v2ðXÞ
w2ðXÞ

2
4

3
5 ¼ L�1

A1;u

A1;v

A1;w

2
4

3
5

¼
cE1

cS1=2

�cE

2
4

3
5 ðabÞ2½2c1bþ cs1a�½5� 6X2 þ X4�

48ðaþ bþ abÞ3

ðB7Þ

Adding Eqs. B3, B6 and B7 we obtain Eqs. 14–16 in the

text.

Appendix C

Nomenclature

Cg Concentration of glucose (mol/cm3)

COX Concentration of oxygen (mol/cm3)

Ca Concentration of gluconic acid

(mol/cm3)

Dg Diffusion coefficient of glucose

(cm2/s)

DOX Diffusion coefficient of oxygen (cm2/s)

Da Diffusion coefficient of gluconic acid

(cm2/s)

Kg Michaelis-Menten constant for glucose

(mol/cm3)

KOX Michaelis-Menten constant for glucose

oxidase (mol/cm3)

vmax Maximal reaction rate (mol/s cm3)

x distance (mm)

Cg* Concentration of glucose in the external

solution (mol/cm3)

COX* Concentration of glucose in the oxygen

solution (mol/cm3)

l Half thickness of the membrane (mm)

u Dimensionless concentration of glucose

v Dimensionless concentration of oxygen

w Dimensionless concentration of gluconic

acid

X Dimensionless distance

cE1, cS1, cE, a, b Dimensionless reaction diffusion param-

eters

Appendix D

The SCILAB/MATLAB program for the numerical solu-

tion of the system of nonlinear second-order differential

Eqs. 6–8 for the glucose composite membrane is given in

the supplementary material for this article.
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